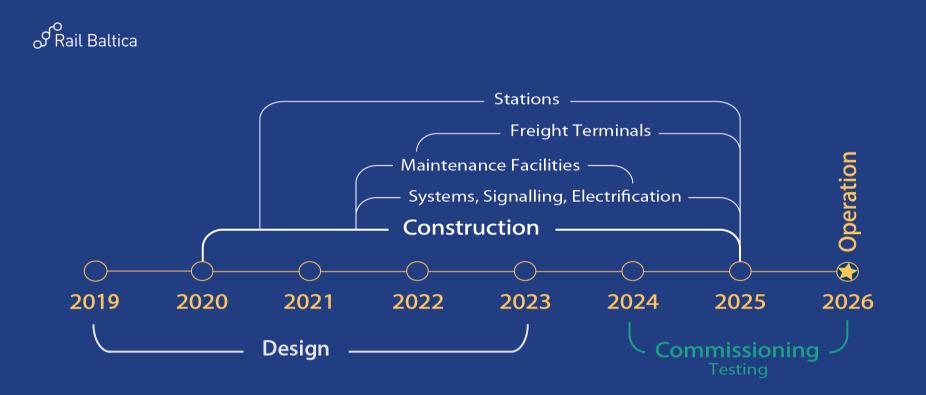


Rail Baltica energy deployment

ESEPE general meeting



Co-financed by the Connecting Europe Facility of the European Union Antanas Šnirpūnas, Electrification and Power Supply Engineer <u>antanas.snirpunas@railbaltica.org</u> Sander Sorts, Technical Interface Expert <u>sander.sorts@railbaltica.org</u>

Dublin

RB Rail 15-10-2020 **AS**

Detailed Technical Design in Estonia

Sections:

- ---- Tallinn to Rapla
- ----- Rapla to Pärnu
- ----- Pärnu to Estonian/Latvian border

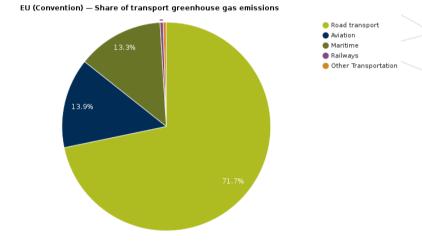
Indicative scope of works:

Find out more about project status here: http://www.railbaltica.org/info

Railway crossings with utility lines Rail Baltica (preliminary list) and Master Design deadlines

Design sections	Electricity	Pipelines	Communication			
Tallinn-Rapla (DS2)	132	55	71			
Rapla-Pärnu (DS1)	41	7	25			
Pärnu-EE/LV (DS3)	67	19	23			
Design sections		Master Design completion deadlines				
Design sections		Master Design complet	ion deadimes			
Tallinn-Rapla (DS2)		ll quarter 2021				
Rapla-Pärnu (DS1)		III quarter 2021				
Pärnu-EE/LV (DS3)		III quarter 2022				

റ് Rail Baltica


Zero energy impact strategy

Share of energy from renewable sources in transport

(2018, in % of gross final energy consumption)


ec.europa.eu/eurostat

Share of transport greenhouse gas emissions, EU-28, 2017

റ്റ് Rail Baltica

Zero energy impact strategy

The levels of ambition on Rail Baltica Zero Impact Strategy

Estimated consumption of Rail Baltica electrification is estimated to 3-4% of national electricity consumption:

Lithuania: 375 000 MW.h/year

Latvia: 284 000 MW.h/year

Estonia: 263 000 MW.h/year

Zero energy impact strategy

Country	Estonia			Latvia				Lithuania ***				
Year	201	.8	20	19	2018		2019		2018		2019 **	
Production by source/ volume and share	MW.h	%	MW.h	%	MW.h	%	MW.h	%	MW.h	%	MW.h	%
Renewable energy, incl.	1,662,000	16%	1,946,000	30%	3,326,454	51%	2,972,322	48%	2,613,000	81%		
Hydropower energy	19,000	0%	22,000	0%	2,417,065	37%	2,095,892	34%	426,000	13%		
Wind energy	591,000	6%	692,000	11%	120,840	2%	152,489	2%	1,139,000	35%		
Biomass energy	1,039,000	10%	1,179,000	18%	438,150	7%	399,627	6%	240,000	7%		
Biogas energy	1,035,000	1070	1,175,000	10/0	349,122	5%	322,780	5%	136,000	4%		
Solar energy		0%		0%	1,277	0%	1,534	0%	80,000	2%		
Waste energy		0%		0%		0%		0%	71,000	2%		
Other renewable energy*	13,000	0%	53,000	1%		0%		0%	521,000 *	16%		
Non-renewable energy, incl.	8,921,000	84%	4,501,000	70%	3,174,882	49%	3,206,656	52%	607,000	19%		
Thermal energy	8,921,000	84%	4,501,000	70%	2,712,652	42%	2,822,835	46%	607,000	19%		
Co-generation energy		0%		0%	462,230	7%	383,821	6%		0%		
Total energy produced	10,583,00 0	100%	6,447,000	100%	6,501,336	100%	6,178,978	100%	3,220,000	100%		

Data sources:

Estonia: Elering https://elering.ee/eesti-elektritoodang-langes-eelmisel-aastal-39-protsenti-tarbimine-uhe-protsendi

Latvia: AS Augstsprieguma tikls http://www.ast.lv/lv/electricity-market-review

Lithuania: Litgrid https://www.litgrid.eu/index.php/power-system/power-system-information/national-electricity-demand-and-generation/3523

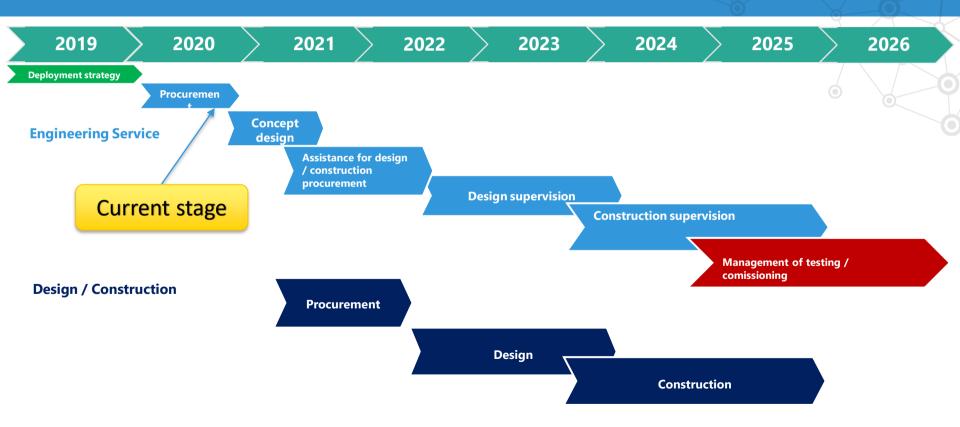
Notes:

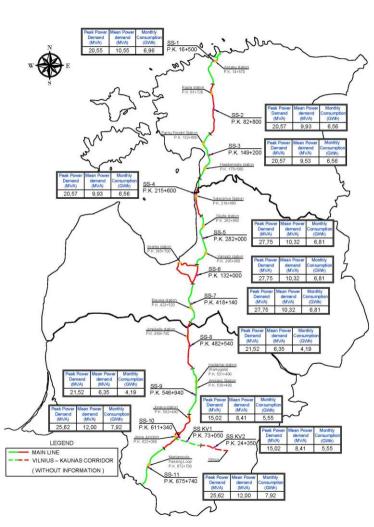
(*) Other renewable energy sources in Lithuania include electricity produced by Kruonis Pumped Storage Plant

(**) Lithuanian data for 2019 is not available yet

(***) Lithuania has a high renewable energy share in own electricity generation, however, around 70% is imported electricity, therefore total share in gross energy consumption is lower (around 20%), see Section 5.1.3.

Energy subsystem – scope of the subject & Main targets


Electricity sources Transmission system High Voltage Feeding Lines Traction **Command System** facilities **Overhead Catenary** System


Rail Baltica

- Main targets
- Safety
- Environmental impact minimisation
- Life cycle costs
- Railway Operation needs
- Railway Maintenance needs
- Efficiency of energy consumption

Rail Baltica Energy Subsystem deployment timeline

Rail Baltica

Rail Baltica Energy Subsystem deployment strategy analysis

 \odot 870 km of double track, ~2 000 km of catenary , ~5 000 masts

• CAPEX 512,4 M€; OPEX 12M€ (by 2030) - (CBA 2017 - E&Y)

● 13 Traction substations estimated (3 EE, 4 LV, 6 LT) for 2x25 kV

>	technology: Energy consu	ption Total	Estimated	for Rail Baltica	Country + RB		
Country	current (2017) (GWh)	foreseen for 2025 (GWh)	monthly (GWh)	annual (GWh)	foreseen (including RB) (GWh)	Increase (%)	
EE	8 410	9 107	21,93	263	9 370	2,9%	
LV	7 410	8 024	23,63	284	8 308	3,5%	
LT	12 149	13 156	31,29	375	13 531	2,9%	

3 other traction supply technologies (1x25 kV, SFC 1x25 kV, SFC 2x25 kV) considered

Different traction supply technologies compared

			TR-SS		TR-SS		SFC-SS		SFC-SS
		TR -SS	1 X 25 Kv	TR-SS	2 X 25 kV	SFC	1x25 kV	SFC	2x25 kV
		1 X 25 kV	(weighted	2 X 25 kV	(weighted	1x25 kV	(weighted	2x25 kV	(weighted
))))
CRITERION	WEIGHTS				SCORES				
1. TECHNICAL	35%		7,78		18,08		28,12		33,68
1.1 Unbalance	10,5%	1	2,1	0	0	5	10,5	5	10,5
1.2 Electromagnetic perturbances	12,5%	0	0	4	10	3	7,5	5	12,5
1.3 Overload capacity	1,4%	4	1,12	5	1,4	4	1,12	4	1,12
1.4 Voltage and current hamornics in the ETG coupling poin	1,4%	1	0,28	2	0,56	5	1,4	5	1,4
1.5 Output voltage quality	1,4%	1	0,28	2	0,56	5	1,4	5	1,4
1.7 Distance between Sub-Stations	1,4%	2	0,56	4	1,12	3	0,84	5	1,4
1.8 Energy Losses	0,8%	4	0,64	5	o,8	2	0,32	2	0,32
1.9 Capacity expansion	1,4%	2	0,56	2	0,56	4	1,12	4	1,12
1.10 Ability to adapt the power supply scheme to increase t	1,4%	0	0	3	0,84	5	1,4	5	1,4
1.11 Efficiency of regenerative braking	1,4%	3	0,84	3	0,84	5	1,4	5	1,4
1.13 RAMS	1,4%	5	1,4	5	1,4	4	1,12	4	1,12
2. IMPLEMENTATION	15%		13		15		6		6
2.1 Proven technology	5,0%	3	3	5	5	2	2	2	2
2.2 Market Situation	5,0%	5	5	5	5	2	2	2	2
2.3 Ease of deployment	5,0%	5	_ 5	5	_ 5	2	2	2	2
3. OPERATION AND MAINTENANCE	10,0%		10		10		2		2
3.1 Ease of operation	5,0%	5	5	5	5	1	1	1	1
3.2 Ease of maintenance	5,0%	5	5	5	5	1	1	1	1
4. ENVIRONMENTAL AND CLIMATE CHANGE	5%		3,8		3,8		4,4		4,4
4.1 Noise	3,0%	5	3	5	3	4	2,4	4	2,4
4.3 Oil generation	2,0%	2	o,8	2	o,8	5	2	5	2
7. ECONOMICAL	35%		35		28,5		22		7
7.1 CAPEX	12,5%	5	12,5	4	10	4	10	1	2,5
7.2 OPEX	12,5%	5	12,5	5	12,5	4	10	1	2,5
7.3 LCC (infrastructure and buildings)	10,0%	5	10	3	6	1	2	1	2
TOTAL	100,0%		69,58		75,38		62,52		53,08

Traction supply technology priorities to consider for further ENE Subsystem deployment stages Rail Baltica

Traction supply technology option	Conditions to verify during ENE Engineering Services	What if traction technology is not feasible to be implemented?
2x25 kV traction supply technology	No public power grid capacity restrictions, no location related restrictions	2x25 traction technology shall be suplemented with load balancing facilities in the critical connection points to the public grids
2x25 kV traction supply technology with load balancing facilities	Additional costs of load balancing facilities in comparison with the SFC technology	SFC technology shall be proposed
Static Frequency Converter (SFC) traction supply technology	-	-

Scope of ENE Engineering services – main scope

- Full management of ENE Deployment process
- the identification of economically optimized ENE subsystem solution (from the Life Cycle Costs point of view) ENE Concept Design preparation:
 - power demand simulation
 - analysis of possible Connection Points to HV public network
 - analysis of different traction technologies
 - fixing the number and capacity of Traction Substations
 - Preparing Technical Specifications for all ENE components (HV feeding lines, Traction Substations, Overhead Catenary System etc.)
- support to RB Rail during ENE Design/Construction procurement process
- > FIDIC supervision of the design/construction and defect notification period
- supervision of the Testing and Commissioning phase

ENE Engineering Service scope of services

Project Management Office services

QUALITY ASSURANCE MANAGEMENT, TECHNICAL INTERFACE MANAGEMENT, RISK MANAGEMENT, COST MANAGEMENT, TECHNICAL COMPLIANCE MANAGEMENT, ENE DEPLOYMENT PROGRAMME CONTROL

PREPARATORY PHASE

- INITIAL DATA COLLECTION
- > SIMULATIONS
- CONCEPT DESIGN PREPARATION
- PROCUREMENT STRATEGY
- MARKET CONSOLATION
- > ASSISTANCE DURING WORKS PROCUREMENT PROCESS

WORKS IMPLEMENTATION PHASE

- DESIGN SUPERVISION
- CONSTRUCTION SUPERVISION
- COMMISSIONING AND TESTING SUPERVISION
- DEFECT NOTIFICATION PERIOD SUPERVISION
- PERFORMANCE CERTIFICATES DELIVERY

Thank you!